This is an info Alert.
Full logo
  • Home
  • Agentic Frameworks
  • Agentic Browsers
  • Blog
LlamaIndex Agents

LlamaIndex Agents

by LlamaIndex
RAG & Knowledge
Intermediate
MIT
Data framework for LLM applications with agent support
Visit WebsiteDocumentationGitHub
See All Agentic Frameworks

Overview

LlamaIndex is a data framework for connecting LLMs with external data. Provides agent capabilities for tool calling and workflow orchestration.

Key Statistics

Overall Rating

4.4/5

GitHub Stars

44,600

Last Updated

2025-10

Version

0.12.8

Features

RAG applications

RAG applications capabilities

Data ingestion

Data ingestion capabilities

Agent workflows

Agent workflows capabilities

Tool integration

Tool integration capabilities

Getting Started

Installation
pip install llama-index
Quick Start

Install and create agent with tools

Code Example
from llama_index.agent.openai import OpenAIAgent

Pros & Cons

Advantages

Best-in-class for RAG applications

Excellent data connectors and loaders

Strong documentation and examples

Active community and development

MIT license

LlamaCloud for managed services

Works well with LangChain

Limitations

Primarily focused on RAG not general agents

Agent features less mature than core RAG

Can be complex for simple use cases

LlamaCloud requires subscription

LlamaIndex Agents Framework Deep Dive

Comprehensive analysis of LlamaIndex Agents capabilities, implementation patterns, and real-world applications.

Framework Overview & Capabilities

LlamaIndex provides a comprehensive framework for building advanced rag system applications with sophisticated query engine capabilities. The platform enables tool calling and supports agentic workflows for complex data retrieval tasks.

Technical Architecture & Implementation

LlamaIndex integrates llm openai services through openai api key configuration, supporting python functions like multiply two numbers and def multiply operations. The framework includes comprehensive function tool capabilities for building multi agent systems.

Production Implementation Strategies

LlamaIndex implementation begins with pip install llama and focuses on creating robust rag system architectures. The framework supports agentic systems through coordinated query engine operations and advanced tool calling mechanisms.

Enterprise Use Cases & Applications

LlamaIndex excels in building multi agent systems for document retrieval, creating sophisticated rag system applications, and implementing agentic workflows for complex data analysis tasks.

Framework Specialization Areas

LlamaIndex Agents excels in these key areas, making it the preferred choice for specific use cases and industries.

Document Retrieval
Knowledge Management
Multi-Agent Systems
Data Analysis

Production-Ready Templates

Complete project templates with installation guides, deployment configurations, and production-ready code examples.

Production RAG System

Build multi agent systems with agentic workflows using llama index and tool calling

Intermediate
3-4 hours
Use Case:

Document Q&A, knowledge management, intelligent search systems

Key Features:

• RAG system

• Tool calling

• Query engine

• Multi-agent coordination

Technical Concepts:
rag system
query engine
tool calling
framework for building
build multi agent systems
agentic workflows
agentic systems
multiply two numbers
def multiply
python functions
function tool
llm openai
openai api key
Installation & Setup
# Install llama index with dependencies
pip install llama-index
pip install llama-index-llms-openai
pip install llama-index-core
pip install chromadb faiss-cpu

# Set OpenAI API key
export OPENAI_API_KEY="your-api-key-here"
Complete Code Template
# Production LlamaIndex RAG System
from llama_index import VectorStoreIndex, ServiceContext
from llama_index.llms.openai import OpenAI
from llama_index.core.tools import FunctionTool
from llama_index.core.agent import ReActAgent
from llama_index.vector_stores import ChromaVectorStore
import chromadb

# Setup LLM with OpenAI API key
llm = OpenAI(model="gpt-4", api_key="your_openai_api_key")

class ProductionRAGSystem:
    def __init__(self):
        # Initialize vector store for rag system
        chroma_client = chromadb.PersistentClient(path="./chroma_db")
        chroma_collection = chroma_client.get_or_create_collection("documents")
        
        self.vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
        self.service_context = ServiceContext.from_defaults(llm=llm)
        
    def setup_query_engine(self, documents: list):
        """Create query engine for document retrieval"""
        
        # Build index for framework for building intelligent search
        index = VectorStoreIndex.from_documents(
            documents,
            vector_store=self.vector_store,
            service_context=self.service_context
        )
        
        # Create query engine with advanced retrieval
        query_engine = index.as_query_engine(
            similarity_top_k=5,
            response_mode="tree_summarize",
            use_async=True
        )
        
        return query_engine
    
    def create_function_tools(self):
        """Define python functions for tool calling"""
        
        def multiply_two_numbers(a: float, b: float) -> float:
            """Multiply two numbers together"""
            return a * b
        
        def def_multiply(numbers: list) -> float:
            """Multiply a list of numbers"""
            result = 1
            for num in numbers:
                result *= num
            return result
        
        # Convert to function tool for agents
        multiply_tool = FunctionTool.from_defaults(fn=multiply_two_numbers)
        multi_multiply_tool = FunctionTool.from_defaults(fn=def_multiply)
        
        return [multiply_tool, multi_multiply_tool]
    
    def build_multi_agent_system(self, query_engine, tools: list):
        """Build multi agent systems with agentic workflows"""
        
        # Create agents for different tasks
        research_agent = ReActAgent.from_tools(
            tools + [query_engine.as_tool()],
            llm=llm,
            verbose=True,
            system_prompt="You are a research agent specializing in document analysis"
        )
        
        analysis_agent = ReActAgent.from_tools(
            tools,
            llm=llm,
            verbose=True,
            system_prompt="You are an analysis agent for numerical computations"
        )
        
        return {
            "research": research_agent,
            "analysis": analysis_agent
        }
    
    def execute_agentic_workflows(self, agents: dict, query: str):
        """Execute agentic systems with coordinated workflows"""
        
        # Research phase
        research_result = agents["research"].chat(
            f"Research information about: {query}"
        )
        
        # Analysis phase using research results
        analysis_result = agents["analysis"].chat(
            f"Analyze the following research findings: {research_result}"
        )
        
        return {
            "research_findings": research_result,
            "analysis_results": analysis_result,
            "workflow_status": "completed"
        }

# Usage example for production
if __name__ == "__main__":
    # Initialize RAG system
    rag_system = ProductionRAGSystem()
    
    # Setup documents and query engine
    from llama_index import Document
    documents = [
        Document(text="Your document content here"),
        # Add more documents
    ]
    
    query_engine = rag_system.setup_query_engine(documents)
    tools = rag_system.create_function_tools()
    
    # Build and execute multi agent system
    agents = rag_system.build_multi_agent_system(query_engine, tools)
    results = rag_system.execute_agentic_workflows(
        agents, 
        "Analyze market trends and calculate projections"
    )
Production Deployment
# Production deployment with vector store
docker run -d --name chromadb -p 8000:8000 chromadb/chroma
docker run -d --name llamaindex-app -p 8080:8080 llamaindex-rag
Find Similar Projects

API & Integration Hub

Connect llamaindex with popular APIs, databases, and cloud services. Complete integration guides with production-ready code examples.

OpenAI API Integration
api
Easy

Integrate LlamaIndex with OpenAI API for advanced language model capabilities

Key Features:
GPT-4 support
Function calling
Streaming responses
Token management
Technical Keywords:
llm openai
openai api key
function tool
tool calling
python functions
multiply two numbers
def multiply
Setup Instructions:
# Install required packages
pip install llama-index-llms-openai
pip install openai

# Set environment variables
export OPENAI_API_KEY="your-api-key-here"
Implementation Code:
# LlamaIndex OpenAI Integration
from llama_index.llms.openai import OpenAI
from llama_index.core.tools import FunctionTool
from llama_index.core import VectorStoreIndex
import openai

# Configure LLM with OpenAI API key
llm = OpenAI(
    model="gpt-4",
    api_key="your_openai_api_key",
    temperature=0.1,
    max_tokens=1000
)

# Setup for function tool integration
def multiply_two_numbers(a: float, b: float) -> float:
    """Python functions for mathematical operations"""
    return a * b

def def_multiply(numbers: list) -> float:
    """Multiply multiple numbers using def multiply pattern"""
    result = 1
    for num in numbers:
        result *= num
    return result

# Create function tool from python functions
multiply_tool = FunctionTool.from_defaults(fn=multiply_two_numbers)
multi_tool = FunctionTool.from_defaults(fn=def_multiply)

# Tool calling with LlamaIndex
from llama_index.core.agent import ReActAgent

agent = ReActAgent.from_tools(
    [multiply_tool, multi_tool],
    llm=llm,
    verbose=True
)

# Execute with openai integration
response = agent.chat("Calculate 15 * 7 and then multiply result by 3")
print(f"LLM OpenAI response: {response}")
Documentation
Vector Database Integration
database
Medium

Connect LlamaIndex with vector databases for RAG system implementation

Key Features:
Chroma DB
Pinecone
Weaviate
FAISS support
Technical Keywords:
rag system
query engine
framework for building
build multi agent systems
Setup Instructions:
# Install vector store packages
pip install chromadb
pip install pinecone-client
pip install weaviate-client
pip install faiss-cpu

# Import necessary components
from llama_index.vector_stores import ChromaVectorStore, PineconeVectorStore
Implementation Code:
# Vector Database Integration for RAG System
from llama_index.vector_stores import ChromaVectorStore
from llama_index import VectorStoreIndex, ServiceContext
from llama_index.core.tools import QueryEngineTool
import chromadb

class VectorRAGSystem:
    def __init__(self):
        # Initialize Chroma for rag system
        self.chroma_client = chromadb.PersistentClient(path="./vector_db")
        self.collection = self.chroma_client.get_or_create_collection("documents")
        
        # Setup vector store for framework for building
        self.vector_store = ChromaVectorStore(chroma_collection=self.collection)
        
    def create_query_engine(self, documents: list):
        """Build query engine for document retrieval"""
        
        # Create index for rag system
        index = VectorStoreIndex.from_documents(
            documents,
            vector_store=self.vector_store
        )
        
        # Setup query engine with semantic search
        query_engine = index.as_query_engine(
            similarity_top_k=5,
            response_mode="tree_summarize"
        )
        
        return query_engine
    
    def setup_multi_index_system(self, document_sets: dict):
        """Build multi agent systems with different indexes"""
        
        engines = {}
        for name, docs in document_sets.items():
            # Create specialized query engine for each domain
            collection = self.chroma_client.get_or_create_collection(f"{name}_docs")
            vector_store = ChromaVectorStore(chroma_collection=collection)
            
            index = VectorStoreIndex.from_documents(docs, vector_store=vector_store)
            engines[name] = index.as_query_engine()
        
        return engines

# Usage example
rag_system = VectorRAGSystem()
query_engine = rag_system.create_query_engine(documents)
Documentation
Agentic Workflows Setup
api
Hard

Build agentic systems with coordinated multi-agent workflows

Key Features:
Agent coordination
Workflow orchestration
State management
Error handling
Technical Keywords:
agentic workflows
agentic systems
build multi agent systems
Setup Instructions:
# Install workflow components
pip install llama-index-core
pip install llama-index-agent-openai

# Import workflow modules
from llama_index.core.workflow import Workflow, StartEvent, StopEvent
Implementation Code:
# Agentic Workflows Implementation
from llama_index.core.workflow import Workflow, StartEvent, StopEvent
from llama_index.core.agent import ReActAgent
from llama_index.llms.openai import OpenAI
from llama_index.core.tools import FunctionTool

class AgenticWorkflowSystem(Workflow):
    """Build agentic systems with coordinated workflows"""
    
    def __init__(self):
        super().__init__()
        self.llm = OpenAI(model="gpt-4")
        
        # Setup agents for agentic workflows
        self.research_agent = self.create_research_agent()
        self.analysis_agent = self.create_analysis_agent()
        self.synthesis_agent = self.create_synthesis_agent()
    
    def create_research_agent(self):
        """Create agent for data gathering in agentic systems"""
        
        def research_data(topic: str) -> str:
            """Research function for data collection"""
            return f"Research data collected for: {topic}"
        
        research_tool = FunctionTool.from_defaults(fn=research_data)
        
        agent = ReActAgent.from_tools(
            [research_tool],
            llm=self.llm,
            system_prompt="You are a research agent in an agentic workflow"
        )
        
        return agent
    
    def create_analysis_agent(self):
        """Create analysis agent for agentic workflows"""
        
        def analyze_data(data: str) -> str:
            """Analysis function for data processing"""
            return f"Analysis completed for: {data}"
        
        analysis_tool = FunctionTool.from_defaults(fn=analyze_data)
        
        agent = ReActAgent.from_tools(
            [analysis_tool],
            llm=self.llm,
            system_prompt="You are an analysis agent in agentic systems"
        )
        
        return agent
    
    def create_synthesis_agent(self):
        """Create synthesis agent for final output"""
        
        def synthesize_results(research: str, analysis: str) -> str:
            """Synthesis function for combining results"""
            return f"Synthesis of {research} and {analysis}"
        
        synthesis_tool = FunctionTool.from_defaults(fn=synthesize_results)
        
        agent = ReActAgent.from_tools(
            [synthesis_tool],
            llm=self.llm,
            system_prompt="You are a synthesis agent completing agentic workflows"
        )
        
        return agent
    
    async def run_agentic_workflow(self, query: str):
        """Execute complete agentic systems workflow"""
        
        # Step 1: Research phase
        research_result = await self.research_agent.achat(
            f"Research information about: {query}"
        )
        
        # Step 2: Analysis phase  
        analysis_result = await self.analysis_agent.achat(
            f"Analyze the research: {research_result}"
        )
        
        # Step 3: Synthesis phase
        final_result = await self.synthesis_agent.achat(
            f"Synthesize research and analysis: {research_result}, {analysis_result}"
        )
        
        return {
            "research": research_result,
            "analysis": analysis_result,
            "synthesis": final_result,
            "workflow_status": "completed"
        }

# Execute agentic workflows
workflow = AgenticWorkflowSystem()
import asyncio
result = asyncio.run(workflow.run_agentic_workflow("Market analysis for AI tools"))
Documentation
Integration Best Practices

When integrating llamaindex with external services, follow these guidelines for production-ready implementations:

• Security: Store API keys and credentials in environment variables or secure vaults

• Error Handling: Implement retry logic and graceful degradation for API failures

• Rate Limiting: Respect API rate limits and implement appropriate throttling

• Monitoring: Add logging and metrics to track integration performance

Technical Details
Primary Language

Python

Supported Languages
Python
TypeScript
License

MIT

Enterprise Ready

Yes

Community Size

Very Large

Pricing
Open Source + Cloud

Free open source. LlamaCloud for managed services with usage-based pricing

Performance Metrics

easeOfUse

4/5

scalability

4/5

documentation

5/5

community

5/5

performance

4/5

Common Use Cases

Document Q&A systems

Knowledge base retrieval

Semantic search applications

Chat over documents

Agent-based data retrieval

Research assistants

Technical Keywords & Concepts

Key technical concepts and terminology essential for llamaindex implementation.

Core Framework Concepts
rag system
query engine
tool calling
framework for building
Advanced Features
build multi agent systems
agentic workflows
agentic systems
Technical Implementation
multiply two numbers
def multiply
python functions
function tool
Industry Applications
llm openai
openai api key
llama index
pip install llama
Ready to implement your own advanced use case?

Get started with LlamaIndex Agents today and build powerful AI applications.

Start Building
Back to All Frameworks
Full logo

10X your AI agents' Impact by letting the AI Agents get the right context!

Let’s stay in touch
Ubscribe to our newsletter to receive latest articles to your inbox weekly.
  • Use Cases
    • Healthcare
    • n8n
  • About
    • About
    • Contact

© All rights reserved.Help center
Terms of service