LlamaIndex Agents
by LlamaIndex
Data framework for LLM applications with agent support
See All Agentic FrameworksOverview
LlamaIndex is a data framework for connecting LLMs with external data. Provides agent capabilities for tool calling and workflow orchestration.
Key Statistics
Overall Rating
4.4/5
GitHub Stars
44,600
Last Updated
2025-10
Version
0.12.8
Features
RAG applications
RAG applications capabilities
Data ingestion
Data ingestion capabilities
Agent workflows
Agent workflows capabilities
Tool integration
Tool integration capabilities
Getting Started
Installation
pip install llama-index
Quick Start
Install and create agent with tools
Code Example
from llama_index.agent.openai import OpenAIAgent
Pros & Cons
Advantages
Best-in-class for RAG applications
Excellent data connectors and loaders
Strong documentation and examples
Active community and development
MIT license
LlamaCloud for managed services
Works well with LangChain
Limitations
Primarily focused on RAG not general agents
Agent features less mature than core RAG
Can be complex for simple use cases
LlamaCloud requires subscription
LlamaIndex Agents Framework Deep Dive
Comprehensive analysis of LlamaIndex Agents capabilities, implementation patterns, and real-world applications.
Framework Overview & Capabilities
LlamaIndex provides a comprehensive framework for building advanced rag system applications with sophisticated query engine capabilities. The platform enables tool calling and supports agentic workflows for complex data retrieval tasks.
Technical Architecture & Implementation
LlamaIndex integrates llm openai services through openai api key configuration, supporting python functions like multiply two numbers and def multiply operations. The framework includes comprehensive function tool capabilities for building multi agent systems.
Production Implementation Strategies
LlamaIndex implementation begins with pip install llama and focuses on creating robust rag system architectures. The framework supports agentic systems through coordinated query engine operations and advanced tool calling mechanisms.
Enterprise Use Cases & Applications
LlamaIndex excels in building multi agent systems for document retrieval, creating sophisticated rag system applications, and implementing agentic workflows for complex data analysis tasks.
Framework Specialization Areas
LlamaIndex Agents excels in these key areas, making it the preferred choice for specific use cases and industries.
Document Retrieval
Knowledge Management
Multi-Agent Systems
Data Analysis
Production-Ready Templates
Complete project templates with installation guides, deployment configurations, and production-ready code examples.
Production RAG System
Build multi agent systems with agentic workflows using llama index and tool calling
Use Case:
Document Q&A, knowledge management, intelligent search systems
Key Features:
• RAG system
• Tool calling
• Query engine
• Multi-agent coordination
Technical Concepts:
Installation & Setup
# Install llama index with dependencies pip install llama-index pip install llama-index-llms-openai pip install llama-index-core pip install chromadb faiss-cpu # Set OpenAI API key export OPENAI_API_KEY="your-api-key-here"
Complete Code Template
# Production LlamaIndex RAG System
from llama_index import VectorStoreIndex, ServiceContext
from llama_index.llms.openai import OpenAI
from llama_index.core.tools import FunctionTool
from llama_index.core.agent import ReActAgent
from llama_index.vector_stores import ChromaVectorStore
import chromadb
# Setup LLM with OpenAI API key
llm = OpenAI(model="gpt-4", api_key="your_openai_api_key")
class ProductionRAGSystem:
def __init__(self):
# Initialize vector store for rag system
chroma_client = chromadb.PersistentClient(path="./chroma_db")
chroma_collection = chroma_client.get_or_create_collection("documents")
self.vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
self.service_context = ServiceContext.from_defaults(llm=llm)
def setup_query_engine(self, documents: list):
"""Create query engine for document retrieval"""
# Build index for framework for building intelligent search
index = VectorStoreIndex.from_documents(
documents,
vector_store=self.vector_store,
service_context=self.service_context
)
# Create query engine with advanced retrieval
query_engine = index.as_query_engine(
similarity_top_k=5,
response_mode="tree_summarize",
use_async=True
)
return query_engine
def create_function_tools(self):
"""Define python functions for tool calling"""
def multiply_two_numbers(a: float, b: float) -> float:
"""Multiply two numbers together"""
return a * b
def def_multiply(numbers: list) -> float:
"""Multiply a list of numbers"""
result = 1
for num in numbers:
result *= num
return result
# Convert to function tool for agents
multiply_tool = FunctionTool.from_defaults(fn=multiply_two_numbers)
multi_multiply_tool = FunctionTool.from_defaults(fn=def_multiply)
return [multiply_tool, multi_multiply_tool]
def build_multi_agent_system(self, query_engine, tools: list):
"""Build multi agent systems with agentic workflows"""
# Create agents for different tasks
research_agent = ReActAgent.from_tools(
tools + [query_engine.as_tool()],
llm=llm,
verbose=True,
system_prompt="You are a research agent specializing in document analysis"
)
analysis_agent = ReActAgent.from_tools(
tools,
llm=llm,
verbose=True,
system_prompt="You are an analysis agent for numerical computations"
)
return {
"research": research_agent,
"analysis": analysis_agent
}
def execute_agentic_workflows(self, agents: dict, query: str):
"""Execute agentic systems with coordinated workflows"""
# Research phase
research_result = agents["research"].chat(
f"Research information about: {query}"
)
# Analysis phase using research results
analysis_result = agents["analysis"].chat(
f"Analyze the following research findings: {research_result}"
)
return {
"research_findings": research_result,
"analysis_results": analysis_result,
"workflow_status": "completed"
}
# Usage example for production
if __name__ == "__main__":
# Initialize RAG system
rag_system = ProductionRAGSystem()
# Setup documents and query engine
from llama_index import Document
documents = [
Document(text="Your document content here"),
# Add more documents
]
query_engine = rag_system.setup_query_engine(documents)
tools = rag_system.create_function_tools()
# Build and execute multi agent system
agents = rag_system.build_multi_agent_system(query_engine, tools)
results = rag_system.execute_agentic_workflows(
agents,
"Analyze market trends and calculate projections"
)Production Deployment
# Production deployment with vector store docker run -d --name chromadb -p 8000:8000 chromadb/chroma docker run -d --name llamaindex-app -p 8080:8080 llamaindex-rag
API & Integration Hub
Connect llamaindex with popular APIs, databases, and cloud services. Complete integration guides with production-ready code examples.
OpenAI API Integration
Integrate LlamaIndex with OpenAI API for advanced language model capabilities
Key Features:
Technical Keywords:
Setup Instructions:
# Install required packages pip install llama-index-llms-openai pip install openai # Set environment variables export OPENAI_API_KEY="your-api-key-here"
Implementation Code:
# LlamaIndex OpenAI Integration
from llama_index.llms.openai import OpenAI
from llama_index.core.tools import FunctionTool
from llama_index.core import VectorStoreIndex
import openai
# Configure LLM with OpenAI API key
llm = OpenAI(
model="gpt-4",
api_key="your_openai_api_key",
temperature=0.1,
max_tokens=1000
)
# Setup for function tool integration
def multiply_two_numbers(a: float, b: float) -> float:
"""Python functions for mathematical operations"""
return a * b
def def_multiply(numbers: list) -> float:
"""Multiply multiple numbers using def multiply pattern"""
result = 1
for num in numbers:
result *= num
return result
# Create function tool from python functions
multiply_tool = FunctionTool.from_defaults(fn=multiply_two_numbers)
multi_tool = FunctionTool.from_defaults(fn=def_multiply)
# Tool calling with LlamaIndex
from llama_index.core.agent import ReActAgent
agent = ReActAgent.from_tools(
[multiply_tool, multi_tool],
llm=llm,
verbose=True
)
# Execute with openai integration
response = agent.chat("Calculate 15 * 7 and then multiply result by 3")
print(f"LLM OpenAI response: {response}")Vector Database Integration
Connect LlamaIndex with vector databases for RAG system implementation
Key Features:
Technical Keywords:
Setup Instructions:
# Install vector store packages pip install chromadb pip install pinecone-client pip install weaviate-client pip install faiss-cpu # Import necessary components from llama_index.vector_stores import ChromaVectorStore, PineconeVectorStore
Implementation Code:
# Vector Database Integration for RAG System
from llama_index.vector_stores import ChromaVectorStore
from llama_index import VectorStoreIndex, ServiceContext
from llama_index.core.tools import QueryEngineTool
import chromadb
class VectorRAGSystem:
def __init__(self):
# Initialize Chroma for rag system
self.chroma_client = chromadb.PersistentClient(path="./vector_db")
self.collection = self.chroma_client.get_or_create_collection("documents")
# Setup vector store for framework for building
self.vector_store = ChromaVectorStore(chroma_collection=self.collection)
def create_query_engine(self, documents: list):
"""Build query engine for document retrieval"""
# Create index for rag system
index = VectorStoreIndex.from_documents(
documents,
vector_store=self.vector_store
)
# Setup query engine with semantic search
query_engine = index.as_query_engine(
similarity_top_k=5,
response_mode="tree_summarize"
)
return query_engine
def setup_multi_index_system(self, document_sets: dict):
"""Build multi agent systems with different indexes"""
engines = {}
for name, docs in document_sets.items():
# Create specialized query engine for each domain
collection = self.chroma_client.get_or_create_collection(f"{name}_docs")
vector_store = ChromaVectorStore(chroma_collection=collection)
index = VectorStoreIndex.from_documents(docs, vector_store=vector_store)
engines[name] = index.as_query_engine()
return engines
# Usage example
rag_system = VectorRAGSystem()
query_engine = rag_system.create_query_engine(documents)Agentic Workflows Setup
Build agentic systems with coordinated multi-agent workflows
Key Features:
Technical Keywords:
Setup Instructions:
# Install workflow components pip install llama-index-core pip install llama-index-agent-openai # Import workflow modules from llama_index.core.workflow import Workflow, StartEvent, StopEvent
Implementation Code:
# Agentic Workflows Implementation
from llama_index.core.workflow import Workflow, StartEvent, StopEvent
from llama_index.core.agent import ReActAgent
from llama_index.llms.openai import OpenAI
from llama_index.core.tools import FunctionTool
class AgenticWorkflowSystem(Workflow):
"""Build agentic systems with coordinated workflows"""
def __init__(self):
super().__init__()
self.llm = OpenAI(model="gpt-4")
# Setup agents for agentic workflows
self.research_agent = self.create_research_agent()
self.analysis_agent = self.create_analysis_agent()
self.synthesis_agent = self.create_synthesis_agent()
def create_research_agent(self):
"""Create agent for data gathering in agentic systems"""
def research_data(topic: str) -> str:
"""Research function for data collection"""
return f"Research data collected for: {topic}"
research_tool = FunctionTool.from_defaults(fn=research_data)
agent = ReActAgent.from_tools(
[research_tool],
llm=self.llm,
system_prompt="You are a research agent in an agentic workflow"
)
return agent
def create_analysis_agent(self):
"""Create analysis agent for agentic workflows"""
def analyze_data(data: str) -> str:
"""Analysis function for data processing"""
return f"Analysis completed for: {data}"
analysis_tool = FunctionTool.from_defaults(fn=analyze_data)
agent = ReActAgent.from_tools(
[analysis_tool],
llm=self.llm,
system_prompt="You are an analysis agent in agentic systems"
)
return agent
def create_synthesis_agent(self):
"""Create synthesis agent for final output"""
def synthesize_results(research: str, analysis: str) -> str:
"""Synthesis function for combining results"""
return f"Synthesis of {research} and {analysis}"
synthesis_tool = FunctionTool.from_defaults(fn=synthesize_results)
agent = ReActAgent.from_tools(
[synthesis_tool],
llm=self.llm,
system_prompt="You are a synthesis agent completing agentic workflows"
)
return agent
async def run_agentic_workflow(self, query: str):
"""Execute complete agentic systems workflow"""
# Step 1: Research phase
research_result = await self.research_agent.achat(
f"Research information about: {query}"
)
# Step 2: Analysis phase
analysis_result = await self.analysis_agent.achat(
f"Analyze the research: {research_result}"
)
# Step 3: Synthesis phase
final_result = await self.synthesis_agent.achat(
f"Synthesize research and analysis: {research_result}, {analysis_result}"
)
return {
"research": research_result,
"analysis": analysis_result,
"synthesis": final_result,
"workflow_status": "completed"
}
# Execute agentic workflows
workflow = AgenticWorkflowSystem()
import asyncio
result = asyncio.run(workflow.run_agentic_workflow("Market analysis for AI tools"))Integration Best Practices
When integrating llamaindex with external services, follow these guidelines for production-ready implementations:
• Security: Store API keys and credentials in environment variables or secure vaults
• Error Handling: Implement retry logic and graceful degradation for API failures
• Rate Limiting: Respect API rate limits and implement appropriate throttling
• Monitoring: Add logging and metrics to track integration performance
Technical Details
Primary Language
Python
Supported Languages
License
MIT
Enterprise Ready
Yes
Community Size
Very Large
Pricing
Open Source + Cloud
Free open source. LlamaCloud for managed services with usage-based pricing
Performance Metrics
easeOfUse
4/5
scalability
4/5
documentation
5/5
community
5/5
performance
4/5
Common Use Cases
Document Q&A systems
Knowledge base retrieval
Semantic search applications
Chat over documents
Agent-based data retrieval
Research assistants
Technical Keywords & Concepts
Key technical concepts and terminology essential for llamaindex implementation.
Core Framework Concepts
Advanced Features
Technical Implementation
Industry Applications
Ready to implement your own advanced use case?
Get started with LlamaIndex Agents today and build powerful AI applications.
Start Building